MATHEMATICS SOLUTION

(NOV 2018 SEM 4 MECHANICAL)

Q1(a) State that the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ is non derogatory.

Solution:

The characteristic equation of A is
$\left|\begin{array}{ccc}1-\lambda & 2 & 3 \\ 2 & 3-\lambda & 4 \\ 3 & 4 & 5-\lambda\end{array}\right|=0$
$(1-\lambda)[(3-\lambda)(5-\lambda)-16]-2[2(5-\lambda)-12]+3[8-3(3-\lambda)]=0$
$(1-\lambda)\left[\left(-1-8 \lambda+\lambda^{2}\right]-2[-2-2 \lambda]+3[-1+3 \lambda)\right]=0$
$\lambda^{3}-9 \lambda^{2}-6 \lambda=0$
$\lambda\left[\lambda^{2}-9 \lambda-6\right]=0$
Since, all roots are distinct and since the characteristic equation is satisfied by A. The degree of minimal equation is equal to 3 and hence A is non-derogatory.
(b) Determine all basic solutions to the following problem

Maximise $\mathrm{z}=\mathrm{x}_{1}+\mathbf{3} \mathrm{x}_{2}+\mathbf{3} \mathrm{x}_{3}$
Subjected to: $1 x_{1}+2 x_{2}+3 x_{3}=4$,

$$
\begin{align*}
& 2 x_{1}+3 x_{2}+5 x_{3}=7, \\
& x_{1}, x_{2}, x_{3} \geq 0 \tag{5M}
\end{align*}
$$

Solution:

No. of basic solution	Non-basic variables o0	Basic variables	Equations and the values of the basic variables	Is the solution feasible?	Is the solution degenerate?	Value of z	Is the solution optimal?
1.	$\mathrm{x}_{3}=0$	$\mathrm{x}_{1}, \mathrm{x}_{2}$	$\mathrm{x}_{1}+2 \mathrm{x}_{2}=4$ $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}=7$ $\mathrm{x}_{1}=2, \mathrm{x}_{2}=1$	Yes	No	5	Yes
2.	$\mathrm{x}_{2}=0$	$\mathrm{x}_{1}, \mathrm{x}_{3}$	$\mathrm{x}_{1}+3 \mathrm{x}_{3}=4$ $2 \mathrm{x}_{1}+5 \mathrm{x}_{3}=7$ $\mathrm{x}_{1}=1, \mathrm{x}_{3}=1$	Yes	No	4	No
3.	$\mathrm{x}_{1}=0$	$\mathrm{x}_{2}, \mathrm{x}_{3}$	$2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=4$ $3 \mathrm{x}_{2}+5 \mathrm{x}_{3}=7$ $\mathrm{x}_{2}=-1, \mathrm{x}_{3}=2$	No	No	---	---

(c) Prove that $\bar{F}=(2 x y+z) i+\left(x^{2}+2 y z^{3}\right) j+\left(3 y^{2} z^{2}+x\right) k$ is an irrotational vector and find the corresponding scalar ϕ such that $\bar{F}=\nabla \phi$.

Solution:

$\operatorname{Curl}(\bar{F})=\left|\begin{array}{ccc}i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 2 x y+z & x^{2}+2 y z^{3} & 3 y^{2} z^{2}+x\end{array}\right|$

$$
\begin{aligned}
& =\left(6 y z^{2}-6 y z^{2}\right) i+(1-1) j+(2 x-2 x) k \\
& =0
\end{aligned}
$$

\bar{F} is irrotatonal.
Since \bar{F} is irrotatonal there exists a scalar function ϕ, such that $\bar{F}=\nabla . \phi$

$$
\begin{aligned}
& (2 x y+z) i+\left(x^{2}+2 y z^{3}\right) j+\left(3 y^{2} z^{2}+x\right) k=\frac{\delta \phi}{\delta x} i+\frac{\delta \phi}{\delta y} j+\frac{\delta \phi}{\delta z} j \\
& \begin{aligned}
\frac{\delta \phi}{\delta x} & =2 x y+z ; \frac{\delta \phi}{\delta y}=\left(x^{2}+2 y z^{3}\right) ; \frac{\delta \phi}{\delta z}=\left(3 y^{2} z^{2}+x\right)
\end{aligned} \\
& \begin{aligned}
\mathrm{d} \phi & =\frac{\delta \phi}{\delta x} d x+\frac{\delta \phi}{\delta y} d y+\frac{\delta \phi}{\delta z} d z \\
\quad & =(2 x y+z) d x+\left(x^{2}+2 y z^{3}\right) d y+\left(3 y^{2} z^{2}+x\right) d z \\
\quad & =2 x y \cdot d x+z . d x+x^{2} \cdot d y+2 y z^{3} \cdot d y+3 y^{2} z^{2} \cdot d z+x . d z \\
& =d\left(x^{2} y+z x+x^{2} y+\frac{y^{2} z^{4}}{2}+y^{2} z^{3}+x z\right) \\
& =d\left(2 x^{2} y+2 z x+y^{2}\left(\frac{z^{4}}{2}+z^{3}\right)\right)
\end{aligned} \\
& \begin{aligned}
\Phi & =2 x^{2} y+2 z x+y^{2}\left(\frac{z^{4}}{2}+z^{3}\right)+c
\end{aligned} \\
& \text { Where, c is constant of integration }
\end{aligned}
$$

(d) Can it be concluded that the average life span of an Indian is more than 71 years, if a random sample of 900 Indians has an average life span 72.8 years with standard deviation of 7.2 years?

Solution:

Null Hypothesis $\mathrm{H}_{0}: \mu=70$ years
Alternate Hypothesis $\mathrm{H}_{\mathrm{a}}: \mu \neq 70$ years
Test statistic: $Z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}$
Since we are given standard deviation of the sample, we put
$\bar{X}=71.8, \mu=70, \sigma=7.2, n=100$
$Z=\frac{71.8-70}{7.2 / \sqrt{100}}=2.5$
Level of significance: $\alpha=0.05$
Critical value: the value of z_{α} at 5% level of significance is 1.96
Decision: Since the computed value $|Z|=2.5$ is greater than the critical value $\mathrm{z}_{\alpha}=1.96$, the null hypothesis is rejected.

Q2 (a) Show that the matrix $A=\left[\begin{array}{lll}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ is diagonalizable and hence find the transforming
matrix and diagonal matrix.

Solution:

The characteristic equation of A is
$\left|\begin{array}{ccc}8-\lambda & -8 & -2 \\ 4 & -3-\lambda & -2 \\ 3 & -4 & 1-\lambda\end{array}\right|=0$
$(1-\lambda)(\lambda-2)(\lambda-3)=0$
$\lambda=1,2,3$.
Since, all eigen values are distinct the matrix A is diagonalize.
(i) For $\lambda=1,\left[\mathrm{~A}-\lambda_{1} I\right]=0$
$\left[\begin{array}{ccc}7 & -8 & -2 \\ 4 & -4 & -2 \\ 3 & -4 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$7 \mathrm{x}_{1}-8 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
$4 \mathrm{x}_{1}-4 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
By Cramer's Rule
$\frac{x_{1}}{\left|\begin{array}{ll}-8 & -2 \\ -4 & -2\end{array}\right|}=\frac{x_{2}}{\left|\begin{array}{ll}7 & -2 \\ 4 & -2\end{array}\right|}=\frac{x_{3}}{\left|\begin{array}{ll}7 & -8 \\ 4 & -4\end{array}\right|}$
$\frac{x_{1}}{8}=\frac{x_{2}}{6}=\frac{x_{3}}{4}$
$\frac{x_{1}}{4}=\frac{x_{2}}{3}=\frac{x_{3}}{2}=t$
$x_{1}=4 t ; x_{2}=3 t ; x_{1}=2 t$
$X_{1}=\left[\begin{array}{l}4 t \\ 3 t \\ 2 t\end{array}\right]=t\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right]$
$X_{1}=\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right]$
Corresponding to eigenvalue 1 , the eigenvector is $[4,3,2]^{\prime}$.
(ii) For $\lambda=2,\left[\mathrm{~A}-\lambda_{2} I\right]=0$
$\left[\begin{array}{lll}6 & -8 & -2 \\ 4 & -5 & -2 \\ 3 & -4 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$6 x_{1}-8 x_{2}-2 x_{3}=0$
$4 \mathrm{x}_{1}-5 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
By Cramer's Rule
$\frac{x_{1}}{\left|\begin{array}{ll}-8 & -2 \\ -5 & -2\end{array}\right|}=\frac{x_{2}}{\left|\begin{array}{ll}6 & -2 \\ 4 & -2\end{array}\right|}=\frac{x_{3}}{\left|\begin{array}{ll}6 & -8 \\ 4 & -4\end{array}\right|}$
$\frac{x_{1}}{6}=\frac{x_{2}}{4}=\frac{x_{3}}{2}$
$\frac{x_{1}}{3}=\frac{x_{2}}{2}=\frac{x_{3}}{1}=t$
$x_{1}=3 t ; x_{2}=2 t ; x_{1}=t$
$X_{2}=\left[\begin{array}{c}3 t \\ 2 t \\ t\end{array}\right]=t\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
$X_{2}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$
Corresponding to eigenvalue 2 , the eigenvector is $[3,2,1]^{\prime}$.
(iii) For $\lambda=3,\left[\mathrm{~A}-\lambda_{3} I\right]=0$
$\left[\begin{array}{lll}5 & -8 & -2 \\ 4 & -6 & -2 \\ 3 & -4 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$5 x_{1}-8 x_{2}-2 x_{3}=0$
$4 x_{1}-6 x_{2}-2 x_{3}=0$
By Cramer's Rule
$\frac{x_{1}}{\left|\begin{array}{ll}-8 & -2 \\ -6 & -2\end{array}\right|}=\frac{x_{2}}{\left|\begin{array}{cc}5 & -2 \\ 4 & -2\end{array}\right|}=\frac{x_{3}}{\left|\begin{array}{ll}5 & -8 \\ 4 & -6\end{array}\right|}$
$\frac{x_{1}}{4}=\frac{x_{2}}{2}=\frac{x_{3}}{2}$
$\frac{x_{1}}{2}=\frac{x_{2}}{1}=\frac{x_{3}}{1}=t$
$x_{1}=2 t ; x_{2}=t ; x_{1}=t$
$X_{3}=\left[\begin{array}{c}2 t \\ t \\ t\end{array}\right]=t\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right] \quad X_{3}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$
Corresponding to eigenvalue 3 , the eigenvector is $[2,1,1]^{\prime}$.
$\mathrm{M}=\left[\begin{array}{lll}X_{1} & X_{2} & X_{3}\end{array}\right]=\left[\begin{array}{lll}4 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$
Since $M^{-1} A M=D$, the matrix $A=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ will be diagonalized to the diagonal matrix
$D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ by the transforming matrix $M=\left[\begin{array}{lll}4 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 1\end{array}\right]$.
(b)Verify Green's theorem for $\int_{c}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y$ where C is the closed curve given by $y \square x^{2} ; y=\sqrt{x}$

Solution:

By Green's Theorem

$$
\int_{c} P \cdot d x+Q \cdot d y=\iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x \cdot d y
$$

Here, $\mathrm{P}=\left(3 x^{2}-8 y^{2}\right) ; \mathrm{Q}=(4 y-6 x y)$
$\frac{\delta Q}{\delta x}=-6 y ; \frac{\delta P}{\delta y}=-16 y$
Along, $y=x^{2}$ and $d y=2 x . d x$ and x varies from $(0,1)$
$\int_{c} P . d x+Q . d y$

$$
\begin{aligned}
& =\int_{0}^{1}\left(3 x^{2}-8 y^{2}\right) \cdot d x+(4 y-6 x y) \cdot d y \\
= & \int_{0}^{1}\left(3 x^{2}-8 x^{4}\right) \cdot d x+2 x\left(4 x^{2}-6 x^{3}\right) \cdot d x \\
& =\left(\left.\frac{3 x^{3}}{3}-\frac{8 x^{5}}{5}+\frac{8 x^{4}}{4}-\frac{12 x^{5}}{5} \right\rvert\, x=0 \text { to } 1\right) \\
& =1-\frac{8}{5}+\frac{8}{4}-\frac{12}{5}=-1
\end{aligned}
$$

Along $y=\sqrt{x}, d y=\frac{1}{2 \sqrt{x}} d x$

$$
\begin{aligned}
& \int_{c} P \cdot d x+Q \cdot d y \\
& \qquad \begin{aligned}
= & \int_{0}^{1}\left(3 x^{2}-8 x\right) \cdot d x \\
+ & (4 \sqrt{x}-6 x \sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \cdot d x \\
= & \int_{0}^{1}\left(3 x^{2}-8 x\right) \cdot d x+(2-3 x) \cdot d x \\
= & \left(\left.\frac{3 x^{3}}{3}-\frac{8 x^{2}}{2}+2 x-\frac{3 x^{2}}{2} \right\rvert\, x=0 \text { to } 1\right) \\
= & 1-4+2-\frac{3}{2}=\frac{-5}{2}
\end{aligned} \\
& \quad \iint_{R} \frac{\delta Q}{\delta x}-\frac{\delta P}{\delta y} \cdot d x \cdot d y=\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(-22 y) \cdot d x \cdot d y \\
& \\
&
\end{aligned} \begin{array}{r}
=\int_{0}^{1}\left(-11 y^{2} \mid y=x^{2} t o \sqrt{x}\right) \cdot d x \\
= \\
= \\
\left.\left.=\frac{\int_{0}^{1}-11 x+11 x^{2}}{2}+\frac{11 x^{5}}{5} \right\rvert\, x=0 \text { to } 1\right) \\
=
\end{array}
$$

(c)Solve the following problem by simplex method

$$
\operatorname{Maximize} \mathrm{z}=3 \mathrm{x}_{1}+\mathbf{2} \mathrm{x}_{2}
$$

$3 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 18$
$\mathrm{x} 1 \leq 4$
$\mathrm{x}_{2} \leq 6$
$\mathrm{x} 1, \mathrm{x}_{2} \geq 0$

Solution:

We first express the problem in standard form
$\mathrm{z}-3 \mathrm{x}_{1}-2 \mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}=0$
$3 \mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}=18$
$\mathrm{x}_{1}+0 \mathrm{x}_{2}+0 \mathrm{~s}_{1}+\mathrm{s}_{2}+0 \mathrm{~s}_{3}=4$
$0 \mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}+\mathrm{s}_{3}=7$
We now express the above information in tabular form

Iteration Number	Basic Variables	Coefficient of					R.H.S Solution	Ratio
		X1-3	x_{2}	S1	s_{2}	s3		
0	Z		-2	00		0		6
S_{2} leaves	S1	3*	2	1	0	0	18	
X_{1} enters	S_{2}	1	0	0	1	0	4	4
	S3	0	1	0	0	1	6	---
1	Z	0	-2	0	3	0	12	
S_{1} leaves	S1	0	2^{*}	1	-3	0	6	3
X_{2} leaves	X_{1}	1	0	0	1	0	4	---
	S3	0	1	0	0	1	6	8
2	Z	0	0	1	0	0	18	
	x_{2}	0	1	1/2	-3/2	0	3	
	X_{1}	1	0	0	1	0	4	
	S_{3}	0	0	-1/2	3/2	1	3	

$\mathrm{x}_{1}=4 ; \mathrm{x}_{2}=3 ; \mathrm{z}_{\max }=18$

Q3 (a) Use Stoke's theorem evaluate $\int \bar{F} . d \bar{r} . \bar{F}=2 y(1-x) i+\left(x-x^{2}-y^{2}\right) j+\left(x^{2}+y^{2}+z^{2}\right) k$ where s is the surface of the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=2$ which is the first octant.

Solution:

By Stokes theorem $\int_{c} \bar{F} d \bar{r}=\iint_{s} \bar{N} \cdot \nabla \cdot \bar{F} d s$
Now, $\nabla X \bar{F}=\left|\begin{array}{ccc}i & j & k \\ \frac{\delta}{\delta x} & \frac{\delta}{\delta y} & \frac{\delta}{\delta z} \\ 2 y(1-x) & \left(x-x^{2}-y^{2}\right) & \left(x^{2}+y^{2}+z^{2}\right)\end{array}\right|$

$$
\begin{aligned}
& =(2 y-0) i-(2 x-0) j+(1-2 x-2+2 x) k \\
& =2 y i+2 x j-k
\end{aligned}
$$

Further $\phi=x+y+z-2$
Normal to the plane ABC ,
$\nabla \phi=\frac{\delta \phi}{\delta x} i+\frac{\delta \phi}{\delta y} j+\frac{\delta \phi}{\delta z} k=i+j+k$
Unit normal to the plane $\triangle \mathrm{ABC}$

$\bar{N}=\frac{\nabla \phi}{|\nabla \phi|}=\frac{i+j+k}{\sqrt{3}}$

$\iint_{S} \bar{N} \cdot \nabla \cdot \bar{F} d s=\iint_{\triangle O A B}(2 y-2 x-1) \cdot d x \cdot d y$
$\int_{x=0}^{2} \int_{y=0}^{2-x}(2 y-2 x-1) \cdot d x \cdot d y=\int_{0}^{2}\left(y^{2}-2 x y-y \mid y=0\right.$ to $\left.2-x\right)$

$$
=\int_{0}^{2}\left[(2-x)^{2}-2 x(2-x)-(2-x)\right] . d x
$$

$$
=\int_{0}^{2}\left[(2-x)^{2}-2\left(2 x-x^{2}\right)-(2-x)\right] \cdot d x
$$

$$
=\left(\left.\frac{-(2-x)^{3}}{3}-2\left(x^{2}-\frac{x^{3}}{3}\right)+\frac{(2-x)^{2}}{2} \right\rvert\, x=0 \text { to } 2\right)
$$

$$
=\left(-2\left(4-\frac{8}{3}\right)-\left(-\frac{8}{3}+2\right)\right)=-2
$$

(b)The standard deviations calculated from two random samples of sizes 9 and 13 are 1.99 and 1.9. Can the samples be regard as drawn from the normal populations with same standard deviations?
(Given: $F_{0.025}=3.51$ with d.o.f. $8 \& 12$ and $F_{0.025}=4.20$ with d.o.f. $12 \& 8$ or $F_{0.005}=4.50$ with d.o.f. $8 \& 12$)

Solution:

Null Hypothesis Ho: $\sigma_{1}{ }^{2}=\sigma_{1}{ }^{2}$
Alternative Hypothesis Ha: $\sigma_{1}{ }^{2} \neq \sigma_{1}{ }^{2}$
Calculations of Test Statistic: $\mathrm{F}=\frac{n_{1} s_{1}^{2} /\left(n_{1}-1\right)}{n_{2} s_{2} /\left(n_{2}-1\right)}$
We are given $\mathrm{n}_{1}=9, \mathrm{n}_{2}=13, s_{1}{ }^{2}=1.99^{2}, s_{2}{ }^{2}=1.9^{2}$
$\mathrm{F}=\frac{9 * 1.9^{2} /(9-1)}{13 * 1.9^{2} /(13-1)}=\frac{4.455}{3.91}=1.139$
Level of significance $\alpha=0.05$
Degree of freedom $v_{1}=n_{1}-1=8$ for the numerator $\mathrm{v}_{2}=\mathrm{n}_{2}-1=12$ for the denominator

Critical Value: The table value
$\mathrm{F}_{(8,12)}(0.025)=3.51$
$\mathrm{F}_{(12,8)}(0.025)=4.20$
$\frac{1}{\mathrm{~F}(12,8)(0.025)}=\frac{1}{4.20}=0.238$
Decision: Since the calculated value $\mathrm{F}=1.139$ lies between 0.238 and 3.51 , we accept the null hypothesis.
(c) Use Penalty Method (Big M method) to solve the following L.P.P.

Minimise $z=6 x_{1}+4 x_{2}$
Subjected to: $\mathbf{2 x} \mathbf{1}+\mathbf{3 x} \mathbf{x} \leq \mathbf{3 0}$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2} \leq 24 \\
& x_{1}+x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

Solution:

We introduce slack variable s_{1}, s_{2} in the first two constraints, surplus variable s_{3} and the artificial variable A_{3} in the third constraint, and big penalty in the object function.

Maximise $\mathrm{z}=6 \mathrm{x}_{1}+4 \mathrm{x}_{2}-0 \mathrm{~s}_{1}-0 \mathrm{~s}_{2}-0 \mathrm{~s}_{3}-\mathrm{MA}_{3}$
Subjected to: $2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{s}_{1}+0 \mathrm{~s}_{2}+0 \mathrm{~s}_{3}+0 \mathrm{~A}_{3}=30$

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+0 s_{1}+s_{2}+0 s_{3}+0 A_{3}=24 \\
& x_{1}+x_{2}+0 s_{1}+0 s_{2}+s_{3}+A_{3}=3
\end{aligned}
$$

We now eliminate the term - MA_{3} from the object function by adding M times the third constraint to the object function.

$$
\begin{aligned}
& z=6 x_{1}+M x_{1}+4 x_{2}+M x_{2}-0 s_{1}-0 s_{2}-M s_{3}-0 A_{3}-3 M \\
& z-(6+M) x_{1}-(4+M) x_{2}-0 s_{1}-0 s_{2}-M s_{3}-0 A_{3}=-3 M
\end{aligned}
$$

Iteration No.	Basic Var.	coeffici ent of						R.H.S. Solution	Ratio
		X 1	X2	S1	S2	S3	A_{3}		
0	z	-6-M	-4-M	0	0	M	0	-3M	
A_{3} leaves	S1	2	3	1	0	0	0	30	$30 / 2=15$
X_{1} enters	S_{2}	3	2	0	1	0	0	24	$24 / 3=8$
	A_{3}	1*	1	0	0	-1	1	3	$3 / 1=3$
1	Z	0	2	0	0	-6		18	
S2 leaves	S_{1}	0	1	1	0	2		24	$24 / 2=12$
S3 enters	S2	0	-1	0	1	3*		15	$15 / 3=5$
	x_{1}	1	1	0	0	-1		3	$3 /-1=-3$

2	z	0	0	0	2	0		48	
$\mathrm{~s}_{1}$ leaves	s_{1}	0	$5 / 3^{*}$	1	$-2 / 3$	0		14	$14 /(5 / 3)$ $=42 / 5$
$\mathrm{x}_{2 \text { enters }}$	s_{2}	0	$-1 / 3$	0	$1 / 3$	1		5	$1^{*}-3=\ldots$
	x_{1}	1	$2 / 3$	0	$1 / 3$	0		8	$8 /(3 / 2)=$ 12

3	z	0	0	0	2	0		48	
	x_{2}	0	1	$3 / 5$	$-2 / 5$	0		$42 / 5$	
	$\mathrm{~s}_{2}$	0	0	$1 / 5$	$1 / 5$	1		$39 / 5$	
	x_{1}	1	0	$-2 / 5$	$3 / 5$	0		$12 / 5$	

$\mathrm{x}_{1}=12 / 5, \mathrm{x}_{2}=42 / 5, \mathrm{z}_{\text {max }}=48$.

Q4(a) Verify Cayley Hamilton theorem for the matrix $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$. Hence find A^{-1}.

Solution:

The characteristic equation of A is
$\left|\begin{array}{ccc}2-\lambda & 1 & 1 \\ 0 & 1-\lambda & 0 \\ 1 & 1 & 2-\lambda\end{array}\right|=0$
$(2-\lambda)[(1-\lambda)(2-\lambda)-0]-1[0-0(2-\lambda)]+1[1(1-\lambda)-0]=0$
$\left(4-4 \lambda+\lambda^{2}\right)(1-\lambda)-(1-\lambda)=0$
$\lambda^{3}-5 \lambda^{2}-7 \lambda-3=0$
This equation is satisfied by A .
In terms of the matrix A this means $A^{3}-5 A^{2}-7 A-3 I$ Now,
Multiply by A^{-1}, we get $\mathrm{A}^{2}-5 \mathrm{~A}-7 \mathrm{I}-3 \mathrm{~A}^{-1}$
$\mathrm{A}^{2}=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}5 & 4 & 4 \\ 0 & 1 & 0 \\ 4 & 4 & 5\end{array}\right]$
$A^{2}-5 A-7 I-3 A^{-1}=0$

$$
\begin{aligned}
A^{-1} & =\frac{1}{3}\left\{-\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]+5\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]+7\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\} \\
& =\frac{1}{3}\left[\begin{array}{ccc}
12 & 1 & 1 \\
0 & 11 & 0 \\
1 & 1 & 12
\end{array}\right]
\end{aligned}
$$

(b) Marks obtained by students in an examination follow normal distributions. If $\mathbf{3 0 \%}$ of students got below 35 marks and $\mathbf{1 0 \%}$ got above 60 marks. Find mean and standard deviation.
(6M)

Solution:

Let m and n be the mean and standard deviation of the distribution.
Since 30% students are below 35, and 20% are in between 35 and m.
Since 10% students are above 40 , and 40% are in between m and 60 .
From the table we find that,
0.2 area corresponds to $\mathrm{Z}=0.525$

And 0.4 area corresponds to $\mathrm{Z}=1.283$
But 0.2 area is to the left of m hence $Z=-0.525$
$\frac{35-m}{\sigma}=-0.525$;
$\frac{60-m}{\sigma}=1.283$
$35-m=-0.525 \sigma$
$60-m=1.283 \sigma$
By subtracting, we get
$25=1.808 \sigma$
$\sigma=\frac{25}{1.808}=13.83$
Putting this value of σ in (i), we get
$35-\mathrm{m}=-0.525 \times 13.83$
$\mathrm{m}=35+0.525 \times 13.83=42.26$
Hence, the mean $=13.83$ and the standard deviation, $\sigma=42.26$.
(c) Use the dual simplex method to solve the following L.P.P.

Minimize $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}$
Subjected to: $2 \mathrm{x}_{1}+\mathrm{x}_{2} \geq 2$

$$
\begin{align*}
& -x_{1}-x_{2} \geq-1 \\
& x_{1}, x_{2} \geq 0 \tag{8M}
\end{align*}
$$

Solution:

Minimise $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}$
Subject to $-2 \mathrm{x}_{1}-\mathrm{x}_{2} \leq-2$

$$
\mathrm{x}_{1}+\mathrm{x}_{2} \leq-1
$$

Introducing the slack variables $\mathrm{s}_{1}, \mathrm{~s}_{2}$, we have
Minimise $\mathrm{z}=\mathrm{x}_{1}+\mathrm{x}_{2}-0 \mathrm{~s}_{1}-0 \mathrm{~s}_{2}$
i.e. $\mathrm{z}-\mathrm{x}_{1}-\mathrm{x}_{2}+0 \mathrm{~s}_{1}+0 \mathrm{~s}_{2}$

Subject to $-2 \mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{s}_{1}+0 \mathrm{~s}_{2}=-2$

$$
\mathrm{x}_{1}+\mathrm{x}_{2}+0 \mathrm{~s}_{1}+\mathrm{s}_{2}=-1
$$

Now s_{2} row is negative, s_{2} leaves. But since all ratios are negative, the L.P.P. has no feasible solution.

Q5 (a)Find e^{A} and 4^{A}. If $A=\left[\begin{array}{ll}3 / 2 & 1 / 2 \\ 1 / 2 & 3 / 2\end{array}\right]$

Solution:

The characteristic equation of A is
$\left|\begin{array}{cc}\frac{3}{2}-\lambda & 1 / 2 \\ 1 / 2 & \frac{3}{2}-\lambda\end{array}\right|=0$
$(3 / 2-\lambda)^{2}-1 / 4=0$
$9 / 4-3 \lambda+\lambda^{2}-1 / 4=0$
$\lambda^{2}-3 \lambda+2=0$
$(\lambda-1) *(\lambda-2)=0$
$\lambda=1,2$

1. For $\lambda=1,[\mathrm{~A}-\lambda \mathrm{I}] X=0$ gives

$$
\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

By $2 \mathrm{R}_{2}$ and $2 \mathrm{R}_{1}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
By $R_{2}-R_{1}\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\mathrm{x}_{1}+\mathrm{x}_{2}=0$
putting $\mathrm{x}_{2}=-\mathrm{t}$, we get $\mathrm{x}_{1}=\mathrm{t}$
$\mathrm{X}_{1}=\left[\begin{array}{c}t \\ -t\end{array}\right]=t\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Hence the eigen values are $1,-1$.
2. For $\lambda=2,[\mathrm{~A}-\lambda \mathrm{I}] X=0$ gives

$$
\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

By $2 R_{2}$ and $2 R_{1}\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
By $\mathrm{R}_{2}-\mathrm{R}_{1}\left[\begin{array}{cc}-1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$-\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$\mathrm{X}_{1}=\mathrm{X}_{2}$
putting $x_{2}=t$, we get $x_{1}=t$
$\mathrm{X}_{2}=\left[\begin{array}{l}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Hence the eigen values are 1,1 .
$M=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right] \quad|M|=2$
$\mathrm{M}^{-1}=\frac{\operatorname{adj} A^{-1}}{|M|}=\frac{1}{2}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
Now, $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
If $\mathrm{f}(\mathrm{A})=\mathrm{e}^{\mathrm{A}}, \quad \mathrm{f}(\mathrm{D})=\mathrm{e}^{\mathrm{D}}=\left[\begin{array}{cc}e^{1} & 0 \\ 0 & e^{2}\end{array}\right]$
If $f(A)=4^{A}, \quad f(D)=4^{D}=\left[\begin{array}{cc}4^{1} & 0 \\ 0 & 4^{2}\end{array}\right]$
$\mathrm{e}^{\mathrm{A}}=\mathrm{Mf}(\mathrm{D}) \mathrm{M}^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
e^{1} & 0 \\
0 & e^{2}
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
e+e^{2} & -e+e^{2} \\
-e+e^{2} & e+e^{2}
\end{array}\right]
\end{aligned}
$$

Similarly, replacing e by 4 , we get
$4^{\mathrm{A}}=\frac{1}{2}\left[\begin{array}{ll}20 & 12 \\ 12 & 20\end{array}\right]=\left[\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right]$.
(b) A random discrete variable \mathbf{x} has the probability density function given

\mathbf{X}	-2	-1	$\mathbf{0}$	$\mathbf{1}$	2	3
$\mathbf{P}(\mathbf{X})$	$\mathbf{0 . 1}$	\mathbf{k}	0.2	2 k	0.3	\mathbf{k}

Find k, the mean and the variance.

Solution:

Since $\sum p(X)=1$
$0.1+\mathrm{k}+0.2+2 \mathrm{k}+0.3+\mathrm{k}=1$
$0.6+4 \mathrm{k}=1$
$4 \mathrm{k}=0.4$
$\mathrm{k}=0.1$
Therefore, the probability distribution of X is

X	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{X})$	0.1	0.1	0.2	0.2	0.3	0.1

$\mathrm{E}(\mathrm{X})=$ mean $=\sum p_{i} x_{i}$

$$
\begin{aligned}
& =(-2) * 0.1+(-1) * 0.1+0 * 0.2+1 * 0.2+2 * 0.3+3 * 0.1 \\
& =1.5 \\
\mathrm{E}\left(\mathrm{X}^{2}\right) & =\sum p_{i} x_{i}^{2} \\
& =(-2) * 0.1^{2}+(-1) * 0.1^{2}+0 * 0.2^{2}+1 * 0.2^{2}+2 * 0.3^{2}+3 * 0.1^{2} \\
& =0.22
\end{aligned}
$$

Variance $=\mathrm{E}(\mathrm{X})-\mathrm{E}\left(\mathrm{X}^{2}\right)$

$$
\begin{aligned}
& =1.5-0.22 \\
& =1.28
\end{aligned}
$$

(c) In an experiment on immunizations of cattle from Tuberculosis the following results were obtained. Using $\boldsymbol{x}^{2}-$ test to determine the efficiency of vaccine in preventing tuberculosis.

	Affected	Not affected	Total
Inoculated	$\mathbf{2 9 0}$	$\mathbf{1 1 0}$	$\mathbf{4 0 0}$
Not Inoculated	$\mathbf{3 1 0}$	$\mathbf{9 0}$	$\mathbf{4 0 0}$
Total	$\mathbf{6 0 0}$	$\mathbf{2 0 0}$	$\mathbf{8 0 0}$

Solution:
(8M)
(i)Null Hypothesis H_{0} : There is no association between the vaccine and the not affected people.

Alternative Hypothesis H_{a} : There is association
(ii)On the basis of this hypothesis, the number in the first cell $=\frac{A X B}{N}$

Where, $\mathrm{A}=$ number of inoculated
$\mathrm{B}=$ number who are affected
$\mathrm{N}=$ Total number of vaccine
Expected frequency $=\frac{400 \times 600}{800}=300$
This is the frequency in the first cell.
The frequencies in the remaining cells are $400-300=100,600-300=300,400-300=100$.
Calculation of \boldsymbol{x}^{2}

\mathbf{O}	\mathbf{E}	$\|\boldsymbol{O}-\boldsymbol{E}\|-0.5$	$\frac{(\|\boldsymbol{O}-\boldsymbol{E}\|-0.5)^{2}}{\boldsymbol{E}}$
290	300	9.5	$\frac{9.5^{2}}{300}=0.301$
310	300	9.5	$\frac{9.5^{2}}{300}=0.301$
110	100	9.5	$\frac{9.5^{2}}{100}=0.903$
90	100	9.5	$\frac{9.5^{2}}{100}=0.903$
		Total	$\boldsymbol{x}^{2}=\mathbf{2 . 4 0 8}$

(iii) Level of significance : $\alpha=0.05$

Degree of Freedom : $(r-1)(c-1)=(2-1)(2-1)=1$
Critical valve : For 1 degree of freedom at 5% level of significance the table value of $x^{2}=3.81$
Decision : Since the calculated value of $x^{2}=2.408$ is less than the table value of $x^{2}=3.81$, the null hypothesis is accepted.

There is no association between the vaccine and the not affected people.

Q6 (a) Use Gauss divergence theorem to evaluate $\iint \bar{N} . \bar{F} . d s$ where $\bar{F}=x^{2}+z j+y z k$ and s is the surface of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$.

Solution:

By divergence formula,
$\iint_{S} \bar{F} \cdot d \bar{S}=\iiint_{V} \nabla \cdot \bar{F} \cdot d i v$
Now, $\bar{F}=x^{2}+z j+y z k$
$\nabla . \bar{F}=\left(\frac{\delta\left(x^{2}\right)}{\delta x}+\frac{\delta(z)}{\delta y}+\frac{\delta(y z)}{\delta z}\right)$
$=2 \mathrm{x}+0+\mathrm{y}$
$=2 \mathrm{x}+\mathrm{y}$

$$
\begin{aligned}
& \iiint_{V} \nabla \cdot \bar{F} \cdot d i v=\iiint_{V}(2 x+y) \cdot d v=\iiint_{V}(2 \mathrm{x}+\mathrm{y}) \cdot d x \cdot d y \cdot d z \\
& \iiint_{V}(2 x+y) \cdot d x \cdot d y \cdot d z=\int_{0}^{1} \int_{0}^{1} \int_{r}^{1}(2 x+y) \cdot d x \cdot d y \cdot d z \\
= & \int_{0}^{1} \int_{0}^{1}(2 x z+y z \mid z=0 \text { to } 1) \cdot d x d y \\
= & \int_{0}^{1} \int_{0}^{1}(2 x+y) \cdot d x d y \\
= & \int_{0}^{1}\left(\left.2 x y+\frac{y^{2}}{2} \right\rvert\, y=0 \text { to } 1\right) \cdot d x \\
= & \int_{0}^{1}\left(2 x+\frac{1}{2}\right) \cdot d x \\
= & \left(\left.\frac{2 x^{2}}{2}+\frac{1}{2} x \right\rvert\, x=0 \text { to } 1\right) \\
= & 1+\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

$\iint \bar{N} . \bar{F} . d s=\frac{3}{2}$
(b)The mean of two random samples of size 9 and 7 are 196.42 and 198.82 respectively. The sum of the squares of the deviation from the mean are 26.94 and 18.73 respectively. Can the sample be considered to have drawn from the same normal population?

Solution:

$\mathrm{n}_{1}=9$ and $\mathrm{n}_{2}=7(<30$, so it is small sample)
$\overline{x_{1}}=196.42 ; \overline{x_{2}}=198.82 ; \sum\left(x_{1 i}-\bar{x}_{1}\right)^{2}=26.94 ; \sum\left(x_{2 i}-\bar{x}_{2}\right)^{2}=18.73$

Step 1:
Null Hypothesis $\left(\mathrm{H}_{0}\right): \mu 1=\mu 2$ (i.e. Samples are drawn from the same population)
Alternate Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right): \mu 1 \neq \mu 2$ (i.e. Samples are not drawn from the same population)

Step 2:
LOS $=5 \%$ (Two tailed test)
Degree of freedom $=n_{1}+n_{2}-2=9+7-2=14$
Critical value $\left(\mathrm{t}_{\infty}\right)=2.145$

Step 3:
Since Sample is small, $\mathrm{sp}=\sqrt{\frac{\sum\left(x_{1 i}-\bar{x}_{1}\right)^{2}+\sum\left(x_{2 i}-\bar{x}_{2}\right)^{2}}{\mathrm{n} 1+\mathrm{n} 2-2}}=\sqrt{\frac{26.94+18.73}{9+7-2}}=1.8061$
S.E. $=\operatorname{sp} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=1.8061 \sqrt{\frac{1}{9}+\frac{1}{7}}=0.9102$

Step 4 : Test Statistic
$t_{\text {cal }}=\frac{\overline{x_{1}}-\overline{x_{2}}}{\text { S.E. }}=\frac{196.42-198.82}{0.9102}=2.6368$
Step 5 :- Decision
Since $\left|\mathrm{t}_{\mathrm{cal}}\right|>\mathrm{t}_{\infty}, \mathrm{H}_{0}$ is rejected $\therefore .$. The samples cannot be considered to have to have been drawn from the same population.
(c) Find the index, rank, signature and class of the Quadratic Form $x_{1}{ }^{2}+2 x_{2}{ }^{2}+3 x_{3}{ }^{2}+2 x_{1} x_{2}-$ $2 x_{1} x_{3}+2 x_{2} x_{3}$ by reducing it to canonical form using congruent transformation method.

Solution:

The matrix form is
$\mathrm{A}=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$
We write $\mathrm{A}=\mathrm{IAI}$
$\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
By $R_{2}-R_{1}, R_{3}-R_{1}, C_{2}-C_{1}, C_{3}-C_{1}$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & 2 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

By $R_{3}-2 R_{2}, C_{3}-2 C_{2}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
3 & -2 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 3 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

$x_{1}=y_{1}-y_{2}+y_{3}$
$x_{2}=y_{2}-2 y_{3}$
$x_{3}=y_{3}$
The rank $=3$, index $=2$
Signature $=$ difference between positive squares and negative squares $=2-1=1$
Since some diagonal elements are positive, some are negative, the value class is indefinite.

